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CHAPTER 1. INTRODUCTION 

Speech coding at low bit-rates has been of great research interest in the past 

decade. This need for low bit-rate coding was triggered by the increase in information 

exchange over various communication networks. Aided by the rapid development in 

hardware technology and digital signal processing techniques, several speech coding 

techniques which offer high degree of compressibility with minimal loss in quality were 

developed for applications like cellular communication, satellite communication, voice 

paging, voice mail and voice response. 

Digital Coding of Speech 

Speech signals when in digital form offer several advantages over analog signals. 

The major advantage is that digital signals are less sensitive to transmission noise but 

of course need a higher bandwidth for transmission. Digital signals are also easy to 

regenerate and store. They can also be error-protected, encrypted and multiplexed. 

Of course, all these advantages do not come for free. Digitizing the speech signals 

introduces some coding distortion. So efficient ways of coding which would keep 

the distortion minimal for a given coding rate are necessary. This coding rate is 

measured by the number of bits transmitted per second or simply bit-rate. Distortion 

is measured in two ways. 
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(i) An objective signal-to-noise ratio (SNR). This is defined as the ratio ot the energy 

of the actual speech signal and the energy in the error after encoding/decoding the 

speech signal. 

(ii) A subjective measure such as mean opinion score (MOS). This involves formal 

listening tests by several trained personnel who rate the perceptual quality on a scale 

from 1 to 5 (1 corresponds to poor and 5 corresponds to excellent ). 

Over the years several coding methods have been developed to keep the bit- 

rate low but at the same time maintain quality of speech so that a given bandwidth 

can be effectively shared. This becomes very important in applications like cellular 

communication, satellite communication, voice storage, voice response and voice mail 

where as many number of users should be fit into the channel (or storage medium) 

to keep the cost low. These coders can be broadly classified as waveform coders 

and vocoders. The waveform coders try to reproduce the input speech waveform 

as closely as possible. They are usually of high quality, simple in structure, but do 

not offer high compression rates. The other group of coders, vocoders, make use of 

a signal-analysis procedure and extract significant features from the speech signal 

and use them to synthesize the speech signal. The quality of speech produced in 

these coders is not good. The spoken speech sound can be identified but the speaker 

usually cannot be identified. These coders are relatively complex but they offer high 

compression of speech (2.4-4.8Kbps). 

Coding Schemes to Reduce Bit-Rate 

As mentioned above coders can be either waveform coders or Vocoders. A brief 

discussion of these types is given below. 



www.manaraa.com

3 

Waveform Coders 

Waveform coders are simple in design and offer high quality speech. Pulse code 

modulation (PCM) is an example of a waveform coder where the input speech signal 

is sampled, quantized and transmitted. The quantizer is designed in such a way that 

lower amplitude signals are given finer quantization resolution than higher amplitude 

signals. At the receiver this process is just reversed and we get the speech signal 

back. This offers high quality speech at 64Kbps. Differential PCM (DPC'M) uses 

a linear predictor to remove the redundancy in the speech signal by predicting the 

present sample as a linear combination of the past samples. The difference between 

the actual and the predicted value of the speech signal, also called the prediction 

residual, is quantized and transmitted. Fewer number of bits are enough for this 

since the prediction residual will be of lesser energy. If the parameters of this linear 

predictor are updated with time then it is called an adaptive DPC'M (ADPC’M). This 

can achieve a bit-rate of 32Kbps when maintaining the same quality as a PCM. When 

quantized to achieve a bit-rate lower than 32Kbps the performance falls rapidly. 

Vocoders 

Vocoders do not try to match the speech waveform. Instead they extract param¬ 

eters of a model which would represent the actual speech and transmit them. The 

design of a vocoder is based on the human speech production system. The human 

speech production system comprises the glottis which provides the excitation and the 

vocal tract which modulates the excitation to produce different sounds. The vocoder 

is based on this system. Vocoders can provide very low bit-rate (2.4-4.8Kbps) trans¬ 

mission rates but the quality is very poor. These vocoders are also of high complexity. 
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Recently, coders which utilize the characteristics of both waveform coders and 

vocoders have been developed. These coders, called the hybrid coders, are capable 

of providing high-quality speech while still maintaining a low bit-rate of 8-16Kbps. 

These hybrid coders are based on the excitation-modulation model of the vocoder but 

they try to reproduce the actual waveform as closely as possible by transmitting some 

information about the excitation also. A variety of hybrid coders have been suggested 

and each one of them has its own way of providing information about the excitation. 

In the code excited linear predictive (C'ELP) coder 22; the information is provided 

as an entry from a carefully chosen codebook containing preselected. Gaussian white 

random sequences. In a multi-pulse linear predictive (MPLP) coder 23j, it is a 

sequence of appropriately located and scaled impulses. In the thinned-out residual 

(TOR) method 24) the excitation is derived from the prediction error sequence by 

means of a thinning out procedure. These hybrid coders have a high complexity 

but due to the development of fast DSP chips and cheaper memory chips they are 

feasible now. Moreover, extensive research on CELP coders has helped it emerge as 

a standard in many applications. 

Figure 1.1 gives a feel for different levels of coder complexity and the related 

quality of speech that can be attained 25 . The quality measure is based on MOS 

and unlike the objective quality measure it tends to saturate after a certain bit-rate 

is reached. The MOS scores are given as follows. A score of 5 indicates perfect 

quality. A score between 4 and 5 is referred to as toll quality and is required of 

Switched telephone networks or Public Switched Networks (PSN). A score between 3 

and 4 is referred to as communication quality. On the basis of complexity the coders 

can be classified as simple, medium, and high complexity coders. PCM, which is 
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Bit-Rate (Kbps)   

Figure 1.1: Quality of speech as a function of transmission rate 

a simple coder achieves toll-quality at bit-rates of 56-64kbps and drops rapidly as 

the bit-rate is reduced. Other waveform coders, like DPCM and ADPCM, which 

are medium-complexity coders achieve toll-quality at bit-rates higher than 32kbps. 

Vocoders are high-complexity coders which work at very low bit-rates of 2.4-4.8Kbps 

but the speech quality attained is very poor and is referred to as synthetic-quality 

as the speaker cannot be identified. The high-complexity hybrid-coders combine 

the high quality potential of waveform coders with the compression efficiency of a 

vocoder. It can achieve toll-quality at as less as 16Kbps and between 8-16Kbps it 
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attains communication quality. 

Another issue related to speech coders is the encoding delay. Encoding delay 

can be defined as the time interval between successive transmissions of speech data 

packets. This delay decides the kind of communication networks they can be used in. 

In public switched networks (PSNs) the allowable delay is less than 5ms. This is be¬ 

cause in the presence of echoes, the perceptual degradation of the transmitted signal 

increases in severity as the round-trip transmission delay increases. This transmission 

delay depends on both the propagation delay and the encoding delay. Traditionally 

this problem was taken care of by echo cancellation circuits. The complexity ot the 

echo cancellation circuitry increases with the increase in the round-trip delay. So 

by keeping the encoding delay to the minimum we can avoid the echo cancellation 

problem to some extent. The hybrid coders which have been mentioned here have a 

large coding delay, typically 20-40ms. which is due to a forward adaptation technique 

used for model parameter estimation and hence they cannot be used with PSNs in 

spite of their high quality speech and low bit-rates. This led to the development of 

low bit-rate low-delay coders. Here the model parameter adaptations are done in a 

backward fashion, by using the synthesized speech instead of actual speech and hence 

avoid the large coding delay. The coding delay is also dependent on the complexity ot 

the coder and so the coder has to be kept as simple as possible. The low-delay vector 

excitation coding (LD-VXC) 26 . low-delay backward adaptive C'ELP 27], low-delay 

codec based on Trellis coded quantization 28- and low-delay coders based on tree 

codes :291 are some examples of hybrid coders which have a coding delay less than 

5ms. The proposed coding scheme will belong to this class of coders and is discussed 

in the following sections. 



www.manaraa.com

Motivation 

Recently, a new approach to speech coding was introduced. This coding scheme 

was based on the Kalman estimation algorithm. In this technique, speech was con¬ 

sidered to be a piece-wise stationary random process and modeled as the output 

of a two stage time varying all-pole filter excited by a white noise sequence. The 

parameters of the model are obtained by linear predictive analysis of the original 

speech. In state space representation, the states of the filter correspond to the ac¬ 

tual speech samples at different instants. In this approach, the Kalman estimator 

algorithm is used to form measurements as a carefully chosen linear combination of 

the actual speech samples which are then used to optimally estimate the states of 

the filter. Estimates of these measurements are also obtained within the Kalman 

estimator algorithm and the difference between the actual measurements and their 

estimates, called the innovations, are quantized and transmitted at regular but sparse 

intervals. The parameters of the model and an estimate of the excitation variance 

are also quantized and transmitted. At the decoder the quantized innovations, the 

parameters and the excitation variance estimate are used to reconstruct the speech 

signal. This coder is referred to as the Innovations-Assisted Linear Predictive Coder 

(IALPC). This coder can be thought of as belonging to the class of hybrid coders. 

The performance of IALPC1 is good but it is highly complex and like other hybrid 

coders the encoding delay is high (32ms). So its use in PSNs is not possible. This 

has motivated us to develop a coder which will be of lower complexity and have a 

low coding delay (less than 5ms). 
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Proposed Coding Scheme 

In the proposed coding scheme, the major limitations of the IALPC, namely high 

complexity and high coding delay, are overcome but of course with some reduction in 

the synthesized speech quality. The coding delay is reduced by employing backward 

adaptive techniques for the model parameter estimation and excitation variance es¬ 

timation. In this technique, the parameters are computed from synthesized speech 

rather than actual speech and so we need not buffer the actual speech. Other than 

reducing the coding delay, it also helps us avoid transmission of the model parame¬ 

ters since they can be derived from the synthesized speech at the decoder itself. The 

complexity of the coder is also reduced by using a reduced Kalman state vector size 

and also by using alternate measurement techniques. 

This thesis is organized as follows. Chapter 2 gives an introduction to the hu¬ 

man speech production process, different speech sounds, and also an all-pole model 

representation of the speech production system. Linear prediction and methods of 

solving the linear prediction equation are also discussed. Chapter 3 deals with dif¬ 

ferent adaptation techniques, namely forward adaptation and backward adaptation. 

Different windowing techniques and their usefulness in obtaining the autocorrelation 

values are discussed in Chapter 4. Special emphasis is given to recursive window¬ 

ing technique since it is used in our proposed model to obtain the autocorrelation 

values. Kalman estimation algorithm is presented in Chapter 5 and is followed by 

a presentation of its application to speech coding in Chapter 6. The forward adap¬ 

tive model and its limitations are also discussed. Chapter 7 gives a brief description 

of the proposed model and also deals with some key design issues like order of the 

prediction model, size of the Kalman state vector, quantizer design, and choice of a 
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measurement vector. Implementation details, results and conclusions are presented 

in Chapter 8. 
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CHAPTER 2. THE LINEAR PREDICTION MODEL 

In this chapter, linear prediction theory which forms the basis of our speech 

prediction model is discussed. We will talk about different speech sounds that are 

produced by the human speech production system and how linear prediction can be 

used to model this system. Methods of solving the linear prediction equations are also 

dealt with. The presentation will be brief since linear prediction is a well understood 

and widely used concept. 

Linear prediction can be defined as a method in which each sample of a signal is 

predicted as a linear combination of its past samples. The use of linear prediction for 

the estimation of future values of a signal from the past is not a new concept. It dates 

back to almost the mid twentieth century 1 . Linear prediction finds application in 

several areas like adaptive filtering, parameter estimation and system identification. 

The success of linear prediction for speech coding is due to its ability to provide us 

with a parametric description of a random process with Gaussian statistics such as 

speech. Linear Predictive Coding (LPC) is the only technique used now to achieve 

low bit rates of 4800 bps for synthesizing speech. Apart from its predictive nature, it 

also provides us with a good model of the vocal tract. This helps us to understand 

the working of the human speech production system for theoretical and practical 

purposes. Further, the parametric representation can also be used for recognition 
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purposes [2]. 

Linear prediction can also be viewed as a method to build an all-pole model for 

a signal which makes the prediction error almost white with a small variance. To 

see this consider a discrete-time signal s{k) which is represented as the output of a 

system with difference equation 

s(k) = lZq
] = l bje(k-j) - ZP

m = i °ms(k m 

where bj. 1 J q and am, 1 _ m _ p are the coefficients of the system. 

Here the signal s(k) is expressed as a linear combination of its past outputs and 

present and past inputs e(k). The transfer function of this linear prediction equation 

can be represented as 

1 - ^ , b-~'i 

H(Z) = ‘j=1 y 
i am ~ — m 

-m = 1 am~ 

(2.1) 

This is the most general system and is referred as the ARM A (auto regressive 

moving average model) or the pole-zero model 4 . There are two variations of this 

model. If the present output depends only on the present and past inputs then the 

model does not have any poles and its transfer function will be 

1 ^ -7 = 1 J 

which is Eqn. 2.1 with the denominator equal to 1. and it is called an MA (Moving 

Average) model or all-zero model. If the present output depends only on the past 

outputs and the present input then it will not have any zeros and its transfer function 

will be 

1 
1 + —m = l -m 

~ — m 
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which is Eqn. 2.1 with the numerator equal to 1. This is called the AR (Auto- 

Regressive) model or the all-pole model. In modeling speech the all-pole model is 

favored because of several reasons which will become evident as the chapter pro¬ 

gresses. Linear prediction is a method for obtaining an AR model of a signal. 

The human speech production system mainly consists of the glottis where exci¬ 

tation is produced, and the vocal tract, which modulates the excitation to produce 

different speech sounds. Speech signals can be voiced or unvoiced. Voiced sounds are 

produced by exciting the vocal tract, with short periodic pulses 3 . The vocal tract 

is excited with noise like turbulent air to generate unvoiced sounds. Linear predic¬ 

tion can be used to build a model for the speech production system. Such a model 

is shown in Figure 2.1. The filter is obtained using linear prediction technique on 

speech segments. The excitation. 6(k)< is chosen to be periodic pulses or white noise 

depending on whether the speech is voiced or unvoiced. s(k) is the output speech. 

A good understanding of speech sounds is essential in choosing an LP model. 

Speech can also be classified as vowels, nasals, stops, and fricatives according to 

acoustic phonetics. Voiced speech signals are nearly periodic for hort durations (10- 

40ms). These voiced speech signals can be adequately represented by an all-pole 

filter model. The nasals, stops, and fricatives (unvoiced) need a pole-zero model to 

represent the vocal tract. The zeros in the transfer function of the model for nasals 

and unvoiced sounds lie within the unit circle in the r-plane 3 . 

The transfer function of the system can be chosen in many ways based on these 

differing speech sounds. For non-nasal voiced speech sounds, the transfer function 

of the linear filter can be represented by an all-pole model. Whereas for unvoiced 
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or nasal speech sounds, the filter transfer function has both poles and zeros. Since 

the zeros of this filter are all within the unit circle in the z plane it can be approxi¬ 

mated with an all-pole model with the desired accuracy [3]. Moreover, if we choose 

an all-pole model the coefficients am can be computed from a set of linear equations. 

The speech production model can thus be represented by an all-pole filter with its 

transfer function as 

F(z) 
1 

1 +£m=l amZ — m 
(2.2) 

This all-pole filter has p poles which are either real or occur in complex conjugate 

pairs. For the filter to be stable, these poles should lie inside the unit circle. The 

output of the filter at the k^ instant can then be written as, 

P 
s(k) = — ^ am,s(k — m) + e(k). (2-3) 

m=l 

Here the speech sample at the time instant k is formed as a linear combination of 

the past p samples and e(A:) is the k^1 sample of the excitation. The parameters 



www.manaraa.com

14 

am's are called the predictor coefficients and they are responsible for the filtering 

action. The vocal tract, in a human speech production system varies according to the 

speech sounds spoken and so the coefficients of the all-pole model must be updated 

periodically to match the varying transfer function of the vocal tract. The following 

sections explain the method of obtaining the coefficients of the all-pole model. 

The Linear Prediction Equations 

Let a zero-mean signal s(k) be estimated as a linear combination of its past p 

values. The prediction can be either 'one-step prediction' i.e., speech sample s(k) is 

predicted from its immediate past samples or *n-step prediction' where we predict 

s(k — n — 1) from the samples s(k — 1). s( k - 2) s( k - p). In this section we will 

deal with only one-step prediction. The prediction equation can be written as 

P 
s(k) = - V ams(k - m) (2.4) 

777 = 1 

where. s(k) is the predicted speech at time tp. The z-transform notation of this 

prediction filter is given by 

P 
-4( -) = - T' amz~m. (2.5) 

777 = 1 

This predicted speech involves some error as the prediction is not perfect and so the 

actual speech at time tp can be written as 

P 
s{k) = - ams(k — m) — e(k). (2.6) 

m = l 

The error in prediction is given by 

P P 
e(k) = s(k) + 'y " a777.s(k — rrt) = y ^ ajns(k — ni) (2. /) 

777= 1 777 = 0 
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where ag = 1. To obtain the predictor coefficients (am's) we minimize the mean 

squared error E — xe
2{k)), where (.) represents the expectation operator. This is 

done by using the orthogonality principle. Orthogonality principle states that the 

desired coefficients are obtained by making error orthogonal to the samples s(k — 

1), s{k — 2), • • •, s( k — p) (Two random variables / and g are orthogonal if (f g) = 0). 

Hence we have. 

(s(k — m)e(k)) = 0 form = 1.2 p (2.8) 

P 
,s{k — m) V] ams(k - i)) — 0. (2.9) 

/—0 

Interchanging the order of the summing and the averaging and replacing ensemble 

average by time average we get. 

P 
Y amy ${k - m)s(k - i) = 0. m = 1.2 p (2.10) 

m= 0 k 

The predictor coefficients can be computed from this equation. 

I sing the orthogonality principle the resulting minimum error can be expressed as 

E = [€2(k): = s[k)e{k) (2.11) 

P 
= i s(k) y ams{k - m)> (2.12) 

m=0 

where ag = 1. Interchanging the order of the summing and the averaging and re¬ 

placing ensemble average by time average we get. 

P 
E = am'y s(k — m)s(k). (2.13) 

m=0 k 

The limits on k in the summation depends on the number of points over which we 

minimize the squared error. There are two ways of doing this: 
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1. We can minimize the error over all time. In this case, limits of k are — oo and oo. 

Then 

P 
]T amRm_j = 0, j = 1,2, and (2.14) 

m= 0 

P 
E = £ amRm (2.15) 

m=0 

where, the autocorrelation values are given by 

OG 

Rm = V s(k)s(k-m). (2.16) 
k— - oc 

These autocorrelation values are usually computed from windowed speech, eg. Ham¬ 

ming window or a recursive window. The method of windowing speech and obtaining 

the autocorrelation coefficients will be discussed in detail in the next chapter. Since 

we have only a finite number of points. K. to operate on. the speech is suitably 

windowed, i.e.. s{k) = 0 for k outside the range (0. A’ - 1). Then Eqn. 2.16 becomes 

A'-l 
Rm — Y1 s(k)s(k — m). (2.17) 

k = m 

Thi s is called the autocorrelation method. 

2. We can also minimize the error over K points of the signal. In this case the limits 

of k will be 0 and K — 1 and the equation becomes. 

P 
YL amcmi = 0 ; = 1.2, •••.p (2.18) 

m=0 

and 

P 
E= Y1 amciQ (2.19) 

m=0 
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where 

A'-l 
cmj= E s(k-m)s(k-j). (2.20) 

k=0 

To compute CQQ to Cpp we need K — p sample points of the signal. This method is 

called the covariance method ll]. 

In speech processing, the autocorrelation method gives better results for frica¬ 

tives and the covariance method for periodic sounds. The autocorrelation method 

is computationally cheaper and it also leads to a number of interesting theoretical 

insights. 

Solution to Linear Prediction Equations (Autocorrelation method) 

Eqn. 2.14 can be written as follows: 

R_\aQ - Roai - R\ao - ■ • * ^ Rp-i«p - 0 

R — 2a0 ^-lal ~ ^0a2 - • • • - Rp-2aP ~ 0 

#_3<3() ~ R — 2al ~ R—la2 ~ ~ Rp--]aP ~ ^ 

R-pa0 - Rl-pal - R2-pd2~ - R0aP = 0 

(2.21) 
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From Eqn. 2.17 it is clear that R_^ = R{. and using ag = 1. we can rewrite Eqn. 2.21 

we get 

RQ RI 

Rl R0 

R'2 Rl 

R2 

R1 

R0 

Rp— 1 
Rp—2 Rp—3 

Rp—1 

Rp—2 

Rp—3 

*0 

al Rl 

a2 R2 

a3 — — RZ 

. aP . .RP. 

(2.22) 

The matrix in this equation is symmetric and Toeplitz. This equation can be solved 

using a recursive technique instead of the standard technique of matrix inversion. 

This recursion is called the Levinson-Durbin algorithm and is computationally very 

efficient : 1'. 

Levinson-Durbin Algorithm 

The recursion proceeds in steps and the predictor of order i is determined from 

the predictor of order i — 1. The recursion is done until the required order of the 

predictor is obtained. 

The recursion starts with an initial predictor order of i = 0. 

1. For i = 0. EQ = RQ 

2. For step i, i = 1 p 

i..   — 1 1 . (* a. rt , — r-» • r\ Cl ‘ /l, ^ 1 £,-_i j i-j 

h z. b. a- - hi 
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c. For m = lto i — 1 

a (i) 
m 4r1} k

ia [i-1) 
i — m 

d. F’j — — 1 (1 kf) 

3. If i ^ p, increment i by 1 and goto step 2. If i = p then end recursion. 

At the start of the recursion EQ is equal to the zeroth autocorrelation coefficient. 

Then for each recursion which goes on till the required order is reached, the k's which 

are called the reflection coefficients or PARC'OR (PARtial C’ORrelation) coefficients 

are calculated for every order. The predictor coefficients for order i are calculated 

recursively from the reflection coefficient of order i and the predictor coefficients of 

order i — 1. Superscripts of the a's represent the iteration number or order of the 

predictor. The quantity Er called the minimum prediction error for order i. either 

reduces or remains constant as the order of the predictor is increased. The recursion 

is stopped when the desired order p is reached. The predictor order is dependent on 

the rate at which the speech signals have been sampled. A predictor order between 

10 and 16 is sufficient for speech to obtain a good prediction. If the linear prediction 

model matches the spectrum of the speech segment well then the prediction error will 

be white and have a small variance. The degree of match can be expressed in terms 

of prediction gain which is defined as 

10 log 
A'-l 

•fc=0 

and its unit is decibel (dB). The higher the prediction gain the better the prediction 
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model. The predictor coefficients (am’s) are updated for every short segment of 

speech so as to obtain a good prediction. In the case of a forward adaptation speech 

coder the am's are computed using the original speech signal and in the case of 

backward adaptation scheme they are computed from previously quantized speech. 

The forward adaptation and backward adaptation techniques are discussed in greater 

detail in the next chapter. 

Pitch Prediction 

We have already seen that the speech production system can be modeled as an 

all-pole filter excited by a white noise sequence. If we take the difference between 

the actual speech and its predicted value we should get an error sequence which is be 

white. The filter which would give this error sequence is called the prediction error 

filter and from Eqn. 2.7 the error sequence can be written as 

P 
e(k) = s(k) - ^2 ams(k - m) (2.23) 

m = l 

and the prediction error filter transfer function can be written as 

H(z) = 1 - Y. 

777 = 1 

— m 

F( = ] 
12.24) 

Because of this structure, where the prediction error filter is the inverse of the all¬ 

pole filter, it is also called an inverse filter and the process of passing actual speech 

through this filter to obtain the error sequence is called inverse filtering. The output 

of this filter is called ‘inverse filtered speech' which is nothing but the error sequence. 

The inverse filtered speech is almost white and has very small sample to sample 

correlation for short intervals but it is still correlated with samples in the adjacent 

pitch periods. This correlation can be removed with a knowledge of the pitch period 
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and a long-term predictor. This long-term predictor (or pitch predictor) assumes the 

form 

P(z) = Ji;--U + 1 + 32Z~-U + 

where the delay M is the estimate of the pitch and f3q's are the coefficients of the pitch 

predictor. Numerous techniques have been suggested for pitch estimation [17], auto¬ 

correlation method and amplitude magnitude difference function being the popular 

methods used with speech coders. The coefficients 3q's are determined by minimizing 

the mean-squared error T8l. By minimizing the mean squared error we end up with 

a set of linear equations as given below: 

r(M.M) r(.\I.M + 1) r(.\LM - 2) r(0, M) 

r( M -r 1. M) r( M ~ 1. .1/ — 1) r(M - 1 ,M - 2) 3o = r(0,M 4- 1) 

r( M — 2. M) r\M - 2..U - 1) r(.\I - 2, M - 2) . r( 0. M - 2) 

where 

*V —1 

r(i.j) = £ e(k-i)e(k-j). 0 _ i.j 3 (2.26) 
k=0 

This equation is solved to obtain the pitch predictor parameters. 

Pitch prediction is very helpful in achieving additional prediction gain especially 

in forward adaptive speech coders where exact pitch estimation is possible. Prediction 

gain due to pitch prediction is usually between 5-7dB in forward adaptive coders i 18] 

and 1-1.5dB in the case of backward adaptive coders 19 . 
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CHAPTER 3. PREDICTOR ADAPTATION TECHNIQUES 

In this chapter, we discuss methods of updating or adapting the all-pole model 

which is necessary to match the changes in the shape of the vocal tract for different 

speech sounds. Adaptive linear prediction is an extension of the linear predictive 

technique discussed in the previous chapter. The speech data is divided into short 

segments, typically of 10 to 20ms duration, and the predictor coefficients are com¬ 

puted on a segment by segment basis. The predictor coefficients computed may or 

may not be transmitted to the receiver depending upon the adaptation scheme used. 

At the receiver a synthesis filter reconstructs the speech using these predictor coef¬ 

ficients. The adaptation techniques frequently used with speech coding are forward 

adaptation and backward adaptation. 

There are some important differences between forward and backward adaptation. 

First, forward adaptation can use clean speech to obtain the predictor coefficients of 

the all-pole model whereas backward adaptation has to use synthesized speech which 

alone is available at the decoder. Second, in forward adaptation the predictor coef¬ 

ficients computed for a particular frame of speech can be applied to the same frame 

whereas in backward adaptation the predictor coefficients computed from the previ¬ 

ous frame have to be applied to the present frame of speech. A detailed description 

of the two methods is given below. 
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Forward Adaptation 

In forward adaptation, the predictor coefficients are computed from actual speech 

samples. This requires buffering of the speech samples. In Figure 3.1, K input 

samples are buffered and the samples are released after p predictor coefficients are 

optimally computed from this segment. This segment is usually windowed with a 

Hamming window [4]. The predictor order is chosen such that an adequate predic¬ 

tion gain is obtained. The choice of the window length K depends on various factors: 

Side Information 

Figure 3.1: Generic Forward Adaptive Speech Coder 

(i) The rate at which the predictor coefficients can be updated and transmitted to 

achieve required bit rate. 

(ii) The time interval over which the input speech signal is stationary and also ade¬ 

quate for the optimization algorithm to be reliable. 



www.manaraa.com

24 

Speech can be considered to be stationary over a time interval of 10 to 40ms and 

usually a K corresponding to a buffer size of 10 to 20 ms is adequate. A predictor 

order of 10 is required to ensure good prediction for a sampling rate of 8kHz [8]. 

In a typical forward adaptive coder, as in Figure 3.1, the input speech is buffered 

and the predictor coefficients are computed optimally. This information is updated 

every 10 to 20 ms in the predictor. A linear combination of the past quantized 

samples (or synthesized speech s(k)) serves as the predicted value s(k) which is 

subtracted from the current sample s(k) to generate the residual 8(k). The residuals 

are quantized and transmitted. Side information about the predictor coefficients are 

also transmitted. 

The inherent problem in this type of forward adaptive coder is the large cod¬ 

ing delay which depends on the size of the buffer. This is objectionable in certain 

communication networks like the public switched networks. This coding delay can 

be avoided by the use of backward adaptation technique. 

Backward Adaptation 

The disadvantages of the forward adaptation technique, namely the coding delay, 

data buffering and extra channel capacity needed to transmit the side information are 

avoided here. This is possible because optimal estimation of the predictor coefficients 

is possible with quantized samples also 5l. 

Figure 3.2 shows a generic backward adaptive coder. The predictor coefficients 

are computed from the synthesized speech s{k). The samples are usually windowed by 

a recursive window. Hence the samples need not be buffered thereby reducing coding 

delay considerably. Also as synthesized speech samples are used to compute the 
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Figure 3.2: Generic Backward Adaptive Speech Coder 

predictor coefficients, side information about the predictor need not be transmitted. 

This is possible because synthesized speech s(k) is available at both encoder and 

decoder. Moreover, the predictor coefficients can be updated as frequently as required 

without increasing the bit rate. The residual 8(k) is obtained as a difference between 

actual speech sample at time instant k and the sample predicted using synthesized 

speech samples. As no buffering of the samples is done the residuals can be quantized 

and transmitted instantaneously. 

The performance of a backward adaptive model is very close to a forward adap¬ 

tive model [5]. It can provide prediction gains only 1 dB short of a forward predictive 

model for one-step prediction [ Chapter 2 Section 2]. However, at low bit rates, when 

we use two-step prediction the prediction gain is poor especially at the beginning 
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of every pitch period and so robust adaptive quantizers are required to encode the 

residuals to compensate for the reduced prediction gains. 
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CHAPTER 4. WINDOWING TECHNIQUES 

In computing the predictor coefficients, the speech signals are blocked into short 

segments (10-20ms) during which time speech can be considered stationary. This 

process of dividing the speech samples into segments is called windowing. In this 

chapter, we shall look at how the windowing of speech samples can be accomplished 

and how the autocorrelation values are computed from the windowed speech. 

Windows that are used in relation to speech prediction are of two types, recur¬ 

sive and nonrecursive 9 . Xonrecursive windows are generally used when forward 

adaptation techniques are employed for model parameter estimation and recursive 

windows are used with backward adaptation techniques. 

The effect of windowing can be explained as follows. Let h(j(k) be the desired 

response of a system and h(k) the actual response of the system given by 

h{k) = h^{k)w(k) 

where w(k) is a finite duration window. From the windowing theorem 6 we can 

write 

H(e^) = zjfln Hd{eJe)\V{€J^'~^))d0 

where H{e^). the frequency response of the actual system, is the periodic con¬ 

volution of the desired ideal frequency response with the Fourier transform of the 

window *6]. So windowing the data results in an alteration of the system response. 
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As linear prediction of speech is a process of spectrum matching the choice of the win¬ 

dowing technique used is quite important in obtaining a good spectral representation. 

The non-recursive and recursive windows are discussed in the following sections. 

Nonrecursive Windows 

Some of the common nonrecursive windows are the rectangular window and the 

Hamming window. The two windows can be mathematically represented as 

Rectangular 

w(k) 

Hamming 

w{k) = 

1, 0 1 k _ K - 1 

| 0. otherwise 

| 0.54 - 0.46 cos 2~k K. 0 < k < K - 1 

0. otherwise 

(4.1) 

(4.2) 

where K is the length of the window. A simple example of a desired (or ideal) re¬ 

sponse of a system (Low-Pass Filter) is shown in Figure 4.2. The frequency response 

of a rectangular window and Hamming window (21 points) are shown in Figure 4.1. 

The frequency response of the window 10 . or simply the window response, is dom¬ 

inated by two features. There is a large hump around u; = 0 called the main lobe 

and the rest of the window response called the side lobes. The frequency response 

of the actual system using the rectangular window and the Hamming window are 

shown in Figure 4.2. It can be seen that the ripple in the frequency response of the 

actual system has a greater amplitude for the rectangular window than the Hamming 

window. But since the main lobe of the rectangular window is narrower than that 
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| W{L> 

-7T 0 
U) 

7r 

Figure 4.1: Frequency Response of Windowing Function 

Figure 4.2: Frequency Response of a Low-Pass Filter 
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of the Hamming window, the width of the transition regions of the system frequency 

response are narrower too. If the window size is increased the width of the main lobe 

decreases for both the windows but the amplitude of the side lobes remain the same. 

So with the Hamming window technique we can achieve a better spectral matching 

by increasing the window length whereas a larger rectangular window will not have 

an improvement. In speech prediction, the predictor coefficients are more sensitive 

to the ripple than the width of the transition regions and so Hamming window is a 

better choice. 

The autocorrelation estimation from windowed speech is done as follows. The 

input speech signal is first divided into segments. This is done by applying the 

window function to the segment which can be mathematically represented as 

sw(k\n) = s(k — nK)w(k) for k = 0, I I\ - 1 (4.3) 

where sw(k\n) is the windowed speech, n specifies the window or segment, and 

k is the index of the speech sample within the current segment. The autocorrelation 

values are given by Eqn. 2.17. with s(k) replaced by Su>(k\n). 

Xonrecursive windows are suited tor forward adaptive speech coders as the pre¬ 

dictor coefficients are computed using buffered speech. The problem with nonrecur¬ 

sive windows is that (of course, it is an inherent problem of the forward adaptation 

techniques ) it needs a lot of memory to buffer the speech samples and thereby in¬ 

creases the coding delay 5 . This problem is eliminated in the recursive windowing 

technique which is used with backward adaptation. 
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Figure 4.3: Impulse Response of a 2n<^ Order HR filter with Two Real Poles at 
z = a 

Recursive Window 

Recursive window or infinite window is mainly used with backward adaptation 

techniques [9]. They use all the past data samples in the autocorrelation estima¬ 

tion. These windows cannot usually adapt to the rapid changes in the model. This 

necessitates the need to update the model parameters more often. The recursive 

window is actually the impulse response of an infinite impulse response filter (HR) 

filter which has its poles within the unit circle. So these windows are unconditionally 

stable. Even though the window is of infinite duration, its magnitude is very small 

outside the desired region, which is controlled by the poles of the filter, and so meets 

the requirement of a finite window. The time reversed impulse response of an HR 

filter is shown in Figure 4.3. The method of computing the autocorrelation values is 

described below. 
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Autocorrelation Estimation Using a Recursive Window 

Let s(n) be the synthesized speech at time instant tn and let ic(k) be the win¬ 

dowing function [11]. Windowed speech is given by 

sxv{n + k) = <s(n + k)w( — k) (4.4) 

where the windowing function is such that w(k) = 0 for k < 0 and w(k) is indexed 

backwards in time as we are using the past synthesized samples in the computation 

of autocorrelation values. The autocorrelation value is then given by 

xo 

Rm = E sw(n ~ k)sw(n - k - txi). (4.5) 
k= — yz 

Substituting Eqn 4.4 in Eqn 4.5. we get 

oc 
Rm = V s(n ~ k)s(rt — k — m)w(—k)w(—k — m). (4.6) 

k= — ~>o 

Define 

\V(k.m) = ic{k)w{k - m) and (4.7) 

S(n — k.m) = sin — k)s(n — k - m ). (4.8) 

Eqn. 4.6 can now be written as 

OG 

Rm — E $(n — k.m)W(-k.m). (4.9) 
k = — oc 

In this equation the autocorrelation value is expressed as the convolution of 

S{n — k.m) and W(k.m). Since 1 V(k.m) is the product of the two windows w(k) 

and w(k — m). the z-transform of W(k.m). namely lTn?(;). can be obtained as the 

convolution of the z-transforms of these two windows. The window is chosen as the 
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impulse response of an IIR filter with a transfer function of H(z). Now Wm(z) can 

be written as 

<f H(u)H(z, 
2irj J 

lu)v-m~Xdv. (4.10) 

J 

The IIR filter is chosen as a 2na order filter with two poles at : = a. The transfer 

function of the 2n^ order filter can be written as 

H(z) = 
(1 - a: -1 \2' 

(4.11) 

Substituting for H(z) in Eqn. 4.10 we get 

U m\~, 
J_ r  
2x7'/ (1 — au~ 1 )“ 

777 -1 
-Zy dU- 

>TTJ J (1 - au~l )“(1 - at//c)“ 

Solving this equation using Cauchy residue theorem 6 and we obtain 

6( 0. 777 ) — 6( 1. 777 ) r ^ 

(4.12) 

IV, 777 I 
1 — (7 ( 1 . 777 ) C 1 — (7 ( 2 . 77? ) r ^ — Cl ( 3 . 77? ) r ^ 

(4.13) 

where 

6(0.77?) = ( 777 — l)am (4.14) 

6(1.77?) = — (?7? — l)am~“ (4.15) 

a(l,77?) = 3a“ (4.16) 

a(2.77?) = — 3a/ and (4.17) 

<?(3,77?) = a®. (4.18) 
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This recursive algorithm can be directly implemented or the filter can be factorized 

into a cascade of 3 first order all-pole filters and an all-zero filter and then imple¬ 

mented. The z-transform of the recursive algorithm can now be represented as 

\\ m\~, -j- [(m+l)am-(m-l)am+2r-lj.(4. 
(1 — 1) (1 — 

— M (1 — at^z~ 1) 

Eqn. 4.19 can be implemented as shown in Figure 4.4 to compute the autocorrelation 

values. The input to the algorithm is the past quantized speech which is obtained as 

the output of the Kalman estimator explained in the next chapter. The product of 

the current synthesized sample and its past values are computed and then passed to 

the linear filter. The output of the cascade of the three all-pole filters is computed 

for every sample. The multiplies in the all-zero portion are done only when the 

autocorrelation values are needed. 

Advantages 

The use of the recursive windowing technique has the following advantages: 

(i) The structure of the filter is very simple and so can be easily implemented in 

hardware. 

(ii) The amount of storage memory required is considerablv reduced. 

(iii) The computations are distributed over all the samples. 

(iv) The performance is as good as the Hamming window technique. 

(v) This is well suited for backward adaptive coders which dont buffer the speech 

samples so as to reduce the coding delay. 

The autocorrelation values obtained are then used in Eqn. 2.22 C hapter 2! to 

obtain the predictor coefficients as explained earlier. In the next chapter, we will 
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s (k) z ^ z ^ 

S(k,m) (m + l)am R(m) 

1 'z~l 

7
 'z-1 z-' 

J J 1 (m — 1 TTL -f"2 

Linear filter 

Figure 4.4: Recursive Windowing Algorithm 
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discuss some concepts of the Kalman estimator and how they can be used in speech 

coding applications. 
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CHAPTER 5. THE KALMAN ESTIMATOR 

In the proposed speech coding scheme, the Kalman estimator acts as an analysis 

filter at the encoder and produces the necessary information to be encoded and trans¬ 

mitted to the decoder. At the decoder, the Kalman estimator acts as a synthesis filter 

and generates synthesized speech using the information received from the encoder. 

So knowledge of the Kalman estimator concepts is essential in understanding the 

speech coding scheme. In this chapter, we discuss the method of representing a ran¬ 

dom process using state space concepts and also present the Kalman filter recursive 

equations. 

The Kalman filter, proposed by R. E. Kalman, provides a recursive solution 

to the least squares problem, 15 . It has found numerous application areas because 

of its features, namely, (i) its mathematical formulation is described in terms ot 

state space concepts. (ii) it uses vector modeling of random processes, and (iii) it 

uses recursive processing of noisy measurement data for prediction, smoothing and 

filtering. Kalman filter can be used for a wide range of applications which include 

adaptive equalization, statistical modeling, parameter estimation, image restoration, 

etc. Moreover, with the advent of special-purpose digital signal processors which 

are ideally suited to implement the Kalman filter its application in digital signal 

processing has increased. 
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Kalman filter algorithm exists for continuous processes as well as discrete time 

processes. In both the process being estimated is considered to be the result of passing 

white noise through a linear system model. The process forms the state vector and is 

recovered using measurements which are linear combinations of the state variables. 

The process need not be necessarily stationary as the model can vary with time. A 

detailed description of the discrete Kalman filter in given in the next section. 

The Discrete Kalman Filter 

Let the input stochastic process be modeled as 

xk-l = * 
wk f'5-1) 

and the observation (measurement) be modeled as, 

=k = Hkxk - uk <5-2) 

where, x^ - (nxl) process state vector at time tk, 

- (nxn) state transition matrix at time tk relating to 

w^,- (nxl) process noise vector at time tk, 

Zfc- scalar measurement at time 

Hk- ( lxn) measurement vector at time tk relating xk to and 

vk- scalar measurement noise at time tk. 

The process noise and the measurement noise are assumed to be zero mean, white, 

and uncorrelated with each other and also with the initial state vector XQ. Mathe¬ 

matically these assumptions can be expressed as. 

£(wkwf] = (5.3) 
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Eiukui\ = 
Rk8kv (5‘4) 

E[vfkui\ = O.for all k and i (5.5) 

E[WJ,XQ ] = 0, for all k and 

E{y-^xQ] = 0. for all k (5-6) 

where &)^ is the Kronecker delta function. Eqn. 5.1 is called the time update equation 

which provides the linear relationship between the state vectors at time + i and t^. 

Eqn. 5.2 is called the measurement equation where the measurement r^ is tormed as 

an inner product of the state vector and the measurement vector H^, plus some noise 

called the measurement noise which arises due to improper measurements. These 

measurements are used to refine or filter the time updated states to get an optimal 

estimate of the actual process. This phase is also called the measurement update 

phase. 

The Kalman Filter Equations 

An initial estimate of the process state vector is assumed to be known at some 

point of time t^. The estimate is assumed on the basis of all our knowledge about the 

process prior to time t^. This initial estimate, called a prion estimate or one-step 

predicted estimate, is denoted by . where the 'hat' specifies that it is an estimate 

and the ;super minus' indicates that it is based on all our knowledge prior to t^. So 

the error in this a priori estimate can be written as 

ek = xk - * 
(5.7) 
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and the associated error covariance matrix, called the a prion error covariance matrix, 

can be defined as 

(5.8) 

The a priori estimate along with the measurement zj^ is used to refine the estimate 

and form the a posterion estimate, also called the measurement updated estimate 

or filtered estimate, denoted by x^. The error in the a posterion estimate can be 

written as 

ek = xk ~ *k (5-9> 

and its associated error covariance matrix P^, called the a posterion error covariance 

matrix, can be written as 

pk = EekekT- (5-10> 

The trace of this P^, matrix has to be reduced to obtain optimal estimates. These lead 

to a set of recursive equations and they are collectively called the Kalman recursive 

algorithm! 15 . 

The Kalman Recursive Algorithm 

The recursive equations are split into analysis equations and synthesis equations 

so as to explain later how they can used in speech coding. 

Analysis Equations 

*k+i = *k*k (5-n> 

Pk + l = *kPk*kT + Qk 
(5.12) 
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** = 
:k “ 

Hk*k 
(5.13) 

Synthesis Equations 

(5.14) 

(5.15) 

(5.16) 

p= a - Kt.H,.)PA: (5.17) 

The scalar quantity which is the difference between the measurement and its 

estimated value H^.x^ is called the innovation and its variance is A^.. K^. is called 

the Kalman gain. This Kalman gain K^, has been chosen such that it minimizes 

the trace of and hence minimize the mean square estimation error. The state 

vector . Xfc, can be recursively estimated if we have knowledge of the transition 

matrix, which describes the system, the process and the measurement variances and 

the initial values of x^. and at time instant k = 0. The best possible estimation 

would be when the trace of P^. is made zero. This is possible if the measurement is 

noiseless (Rf, = 0) but is seldom true in real applications as the measurements are 

noisy. 

In the forthcoming chapters, we discuss how the Kalman filter can be used in 

the proposed speech coding, methods of choosing a measurement vector for optimal 

estimation and also present implementation details of the speech coder. 
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CHAPTER 6. APPLICATION TO SPEECH CODING 

In Chapter 2 we pointed out that speech can be considered as piece-wise station¬ 

ary and modeled as the output of an all-pole filter driven by Gaussian white noise. 

The Kalman estimator (see Chapter 5) also assumes that a random process can be 

modeled as the output of a linear system driven by white noise. In this chapter, 

we describe how the LP model and the Kalman estimator algorithms are applied to 

speech coding. 

As seen in Chapter 5. the Kalman estimator works as a predictor and corrector 

combination. It first predicts the next state and then optimally corrects it using the 

measurements. Since the LP analysis provides a model which predicts the next speech 

sample by minimizing the prediction error, the LP model can be used to describe the 

linear system in the Kalman estimator. Also in LP analysis, the residual variance is 

obtained by inverse filtering the input speech. This residual variance can be used to 

provide an estimate of the variance of the white noise input to the Kalman estimator. 

Since speech is stationary only for short segments (10-20ms) the parameters of the 

linear system in the Kalman estimator have to be updated at least every 20ms so as 

to obtain optimal estimates. This is achieved by doing the LP analysis every 20ms or 

lesser using either forward adaptive or backward adaptive technique see Chapter 3i. 

In the Kalman estimator problem, the system is represented in state-space for- 
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mulation in terms of the process equation given by 

xfc + l = *« + wfc 
(6.1) 

where. 

xj. - (nxl) process state vector at time 

- (nxn) state transition matrix at time tj, relating x^. to x^,^, and 

w^,- (nxl) process noise vector at time t^,. 

The system model arising from LP analysis of speech is characterized by just a 

short term predictor or a combination of short term and long term predictor. For 

simplicity, let us assume that only a short term predictor of order p is used. The 

speech sample at time instant tj, can then be represented as 

where am's are the parameters of the all-pole filter. Suppose the state vector at time 

tf, consists of the present sample and past p — 1 samples as in Eqn. 6.3 

(6.2) 

x/e = (6.3) 

. Sk . (pxl) 
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then using Eqn. 6.2 we can identify the state-transition matrix as 

*k = 

-<*1 -a 2 • 

1 0 0 0 0 

0 10 0 0 

-dm 

0 0 0 0 0 

and the white noise input w^, as 

1 

0 

0 

Wl 

0 

e/.. 

J(pxi; 

— cip 

0 

0 

. L 0 
J{pxp) 

(6.4) 

(6.5) 

The measurements are formed by H^. operating on x^.. i.e. as a linear combination of 

current and past p — 1 speech samples. The selection of the measurement vector H^. 

is crucial in obtaining optimal estimates and will be discussed in the next section. To 

reduce the number of bits transmitted, these measurements are taken at sparse but 

regular intervals and the innovations obtained from them lEqn. 5.13] are quantized 
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Encoder Decoder 

Figure 6.1: Block diagram of Kalman estimator based forward adaptive coder 

and transmitted. The process noise variance Q^ is obtained by inverse filtering the 

synthesized speech and estimating its variance. The measurement noise variance 

is obtained as a function of the innovation variance Eqn. 5.14 and the quantizer 

design. 

Previous Work on Speech Coders Using the Kalman Estimator 

Speech coders utilizing the concepts of Kalman estimator have been studied 

earlierl3 16 . A block diagram of such a coder is shown in Figure 6.1. The model 

used here is forward adaptive and consists of both a short-term predictor and a pitch 

predictor. 

The input speech is blocked (10-20ms) and windowed with a Hamming window. 

LP analysis is then done and the short-term predictor parameters (am's) are obtained 

using the stabilized covariance method with high frequency correction 13,. The input 

speech is inverse filtered using the short-term predictor alone and the pitch (M) and 
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pitch predictor coefficients {Jj's) are computed from this. The excitation variance 

is computed from the residuals obtained by inverse filtering this signal again using 

the long-term predictor. The transfer function of the prediction filter with both the 

short-term and the long-term filter can be written as 

P it + q-l p . . , 

-■»(--) = Y. «m=-m+ L i3j + l£ <4. <6'6> 

777 — 1 j — M 1— 1 

The first row of the state transition matrix in equation 6.4 is replaced in this case by 

the coefficients of z~l of Eqn. 6.6 and size n of the state vector is M 4- p -t- q — 1. The 

size of the state vector is dependent on the maximum pitch and so it is usually of a 

high order (e.g., 128). The measurements are formed as a linear combination of the 

input speech in the Kalman filter. The measurement vector is selected optimally 

in a way similar to the selection of the Kalman gain vector to minimize the trace of 

the a posteriori error covariance matrix PThis means that the Kalman estimator 

has to be executed even at the encoder. Finally, the innovations which are formed 

as a difference of the measurements and their estimates (H*** ) are quantized using 

a non-uniform quantizer and transmitted at regular but sparse intervals (L). The 

short-term predictor coefficients, pitch, pitch predictor coefficients, and the excitation 

variance are also quantized and transmitted. At the decoder, the Kalman estimator 

which acts as a synthesis filter makes use of the model parameters and the quantized 

innovations to synthesize speech. Since the innovations play an important role in 

the synthesis of speech, this coder is called an Innovations-Assisted Linear Predictive 

Coder (IALPC1). Moreover, the coder is a forward adaptive IALPC1 as the model 

parameters are obtained by forward adaptation technique (see Chapter 3). The 

optimal measurement selection procedure is discussed next. 
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Selection of a Measurement Model 

The measurements are obtained as linear combinations of the present and past 

speech samples [Eqn. 5.2]. These measurements are taken at regular but sparse 

intervals (L) so as reduce the number of bits required to code them. So the a pri¬ 

ori estimates are L-step predicted and not one-step predicted. This affects the 

performance of the speech coder especially when used in backward adaptive speech 

coders. The selection of the measurement vector is therefore an important factor 

in obtaining good performance since better measurements can compensate for bad 

prediction. The states of the speech process, i.e., the past speech samples, are avail¬ 

able at the encoder. So we can form any linear combination of the states to obtain 

a measurement every time one is required. This would provide us with better esti¬ 

mates than if we use a fixed measurement vector (a fixed linear combination) for all 

measurements! 131. The method of selecting an optimal measurement model which is 

used with the forward adaptive model is discussed below. 

Optimal Measurement Vector We use the same minimization criterion as 

used in the Kalman filter algorithm to arrive at an optimum Kalman gain vector to 

obtain the optimum measurement vector also. This measurement vector is chosen 

to minimize the trace of the a posteriori error covariance matrix P^,. Given the a 

priori estimate and the a priori error covariance matrix we have to obtain 

a Hk which will minimize the trace of P^,. Combining Eqns. 5.12 and 5.17 we can 

represent P^, as 

p* = 
p7 - p7H*r<H*.-p7V - (6.7) 



www.manaraa.com

48 

The trace of P^, can now be written as 

fPi! = ‘^ki ~ t'lpkiikT^kpklikT + Rkf^kPk 1- <6-8> 

Instead of minimizing ir[P^] with respect to we can maximize the quantity 

tr[P^Hk
T{HkP^Kk

T + Rk)~1HkPj;}. Since P^ is symmetric and (H^P^Hjf,11 4 

Rfc) is a scalar the quantity to be maximized can be written as 

<|-!(Ht.PtT)7’(PtTH k)\ = (H,PtT)(PtTH,r) 

H/L.PATHtJ - Rk HA.P^HA7 - Rk ' 

The measurement noise variance is dependent on the quantizer design and the 

— T 
innovation variance A^,. So it can be represented as 6(HkPk Hk

A ) where 6 is a 

function of the number of quantization levels of the quantizer. Making use of this 

dependence of Rk on the innovation variance the quantity to be maximized can be 

modified to 

1 /HA.PtTPtTHt7 
1 - *\ HA.PATHA.r 

(6.9) 

This quantity is maximized if H^, is chosen as the eigenvector of corresponding 

to the largest eigenvalue. The measurement vector thus selected is used in forming 

the scalar measurements which are used to correct the predicted estimates and obtain 

optimal estimates. 

This forward adaptive coder is computationally highly complex because updating 

of the error covariance matrix in the Kalman estimator takes considerable time. This 

makes it difficult to implement the coder in real-time. Another problem is the large 

coding delay which is inherent in forward adaptive codersioj. This is due to fact 

that 10-‘20ms of speech has to be buffered to compute the model parameters. This 
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delay causes problems in applications where echo cancellation is done, e.g., in Public 

Switched Networks (PSN). 



www.manaraa.com

50 

CHAPTER 7. PROPOSED CODER 

In the previous chapters, we discussed about the speech production model, state- 

space representation of speech, and how Kalman estimator is used to implement a 

forward adaptive IALPC1. In this chapter, we will put forth the limitations of the 

forward adaptive IALPC and give a block diagram of the proposed coder which 

overcomes some of these limitations followed by some discussions on the effect of 

various parameters on the coder performance. 

Motivation 

The need to reduce the coding delay and also the complexity of the forward 

adaptive IALPC motivated us to look at solutions to the problem. In this work, two 

problems are addressed: 

(i) reducing the coding delay to less than 5ms and. 

(ii) reducing the complexity of the coder to enable real-time implementation. 

To tackle the coding delay problem, we used a backward adaptive linear predic¬ 

tor along with a recursive windowing technique for autocorrelation value calculation 

which eliminates the need for buffering speech samples. The computational complex¬ 

ity of the coder has been reduced in various stages which include the linear predictor 

and the Kalman estimator. The computational complexity of the error covariance 
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matrix update in the Kalman estimator has been reduced by using a dimensionally 

smaller error covariance matrix. Also the choice of a sub-optimal measurement vector 

reduced the complexity further. The algorithmic delay has been restricted to 1.25ms 

by using a vector size of 10 samples. In the next section we provide a description 

of the proposed coder along with its block diagram. This is followed by discussions 

related to the choice of the predictor order, choice of the recursive window size, size 

of the Kalman state vector, and the choice of the measurement vector. 

Block Diagrams 

The encoder and decoder block diagrams of the proposed coding scheme are 

shown in Figures 7.1 and 7.2 respectively. At the encoder the input speech is buffered 

and the state vector x^, (10 samples) is formed. This is used in forming the measure¬ 

ments in the Kalman estimator which acts as an analysis filter at the encoder. The 

state transition matrix of the Kalman estimator is defined by the coefficients of the 

all-pole filter which are computed using a backward adaptive technique in the short¬ 

term filter adapter block. The short-term filter adapter makes use of the synthesized 

speech output of the Kalman estimator to compute the autocorrelation values using 

a recursive windowing technique as described in Chapter 4. The predictor coefficients 

are then computed using Levinson-Durbin algorithm (see Chapter 2 Sec. 2). Once 

the predictor coefficients are obtained the synthesized speech is inverse filtered in the 

prediction error filter' block to obtain the prediction error sequence. The average 

energy in one error vector (10 samples) is computed to get an estimate of the process 

noise variance Q*- These parameters are used in the Kalman estimator to produce 

the innovations at regular but sparse intervals (L) and also to synthesize speech. The 
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Innovations 

Encoder 

Figure 7.1: Block diagram of Encoder 
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Decoder 

Figure 7.2: Block diagram of Decoder 
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innovations are then quantized with an adaptive non-uniform quantizer and trans¬ 

mitted to the decoder. As the model parameters are computed from synthesized 

speech which is available at the decoder also they dont have to be transmitted to 

the decoder. The decoder has a similar structure like the encoder except that the 

Kalman estimator in the decoder acts as a synthesis filter. The quantized innovations 

received along with the model parameters that are computed at the decoder are used 

to reconstruct the speech signal. 

Design of the Proposed Coder 

In this section, issues such as (i) selection of an optimum model order which 

will give a reasonably good prediction at the same time keep the computational 

complexity low and (ii) modified designs to quantize the innovations so as to improve 

the objective and subjective quality of the synthesized speech, are discussed. In 

describing the design procedure, we will have a need to illustrate the influence of 

different design parameters. This will be done based on Averaged SEGmental Signal- 

to-Noise Ratio (SEGSNR) values using a speech database. These SEGSNR values 

are obtained by calculating the signal-to-noise ratio in dB for nonoverlapping blocks 

16ms in duration, and averaging all the SNR values omitting those blocks which 

have energies 40dB less than the average energy of the speech sentence. The speech 

database consists of six sentences and the details of these sentences are shown in 

table 7.1. Also plots for one particular vowel /ae/ as in 'Cats' from the sentence 

uCats and dogs each hate the other'' has been chosen to show the effect of different 

parameters on the speech quality where necessary. 
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Table 7.1: Details of representative sentences 

Sen Id Sentence Sex 
Approx, 

pitch (Hz) 
Number of 

samples 

FI The pipe began to rust while new F 190 22424 

F2 The ripe taste of cheese improves with age F 220 27054 

F3 Open the crate but dont break the glass F 220 25050 

Ml Cats and Dogs each hate the other M 120 23046 

M2 Open the crate but dont break the glass M 140 23547 

M3 Thieves who rob friends deserve jail M 130 23453 

Structure of the Linear Predictor 

The choice of the linear predictor model is crucial since the complexity of the 

coder depends on it. The possible structures are 

(i) A short-term filter of a small order (p _ 16) 

(ii) A short-term filter of small order and a long-term filter 

(iii) A short-term filter of large order (say 50) 

If we use structure (ii) or (iii) then we will have to find ways of keeping the size of 

the error covariance matrix small so as to reduce the computational complexity of 

its update. If we use structure (ii) like the one which is used in the forward adaptive 

IALPC see Chapter 6 then the size of the error covariance matrix will be of a very 

large size (approx. 128) and so the update will be computationally very intensive. 

To avoid this we have to use the long-term filter first and then the short-term filter 

so that the estimation process is limited to the short-term filter. This means that 

the Kalman estimator will estimate the modified excitation for the long-term filter. 

The reconstructed speech can be obtained from this by passing it through a filter 

whose transfer function is -j-—w^ere ^(c) is the transfer function of the long¬ 

term predictor [see Chapter 2]. The problems with this structure are: (a) If we use 



www.manaraa.com

56 

the long-term filter first it removes some of the short-term correlation also and so the 

prediction gain of the short-term filter suffers. The overall prediction gain obtained is 

much less than what could be achieved with a model which has the short-term filter 

first and then the long-term filter, (b) The use of backward adaptation technique for 

the model parameter estimation results in a great reduction in the prediction gain 

with this structure. So using a long-term predictor is not going to help. The only 

choices we have are to use just a short-term predictor of small order or large order 

if it provides a significant increase in the prediction gain for L-step prediction which 

is necessary to keep the bit-rate low. But the complexity of the coder is dependent 

on the size of the error covariance matrix as discussed earlier and it is proportional 

to n“, where n is the size of the state vector. So if we use a 50^ order model the 

computation time is going to increase drastically. When a 50^ order model was 

tried with a state vector also of size 50. there was one more problem apart from 

the increased complexity. The output synthesized speech was available only after a 

delay of 50 samples to the short-term filter adapter for processing because it had to be 

shifted through the a posteriori state vector x^. This large delay resulted in very poor 

prediction gains since the model parameters did not adequately describe the present 

segment of speech. To avoid this a different technique was used. In this technique, 

a 50^ order model was used for prediction whereas for the error covariance update 

a 10th order model was used. Both these models were obtained from synthesized 

speech. With this technique, prediction gains and coder performance were obtained 

without any quantization of the measurements and will be discussed later in this 

section. 

Figure 7.3 shows one-step prediction gains for various orders of the all-pole model 
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Figure 7.3: Effect of model order on prediction gain (Backward adaptation) 

in the proposed coder. Though the average increase in prediction gain for the six 

sentences is only 0.7dB, the gains for two sentences, namely F2 and M3, show an 

increase of almost 1.5dB. This led us to investigate how two-step prediction would 

affect the prediction gains for different model orders. While using a two-step pre¬ 

diction model, the Kalman estimator is started off with a sub-optimal measurement 

vector and then changed to an optimal measurement vector, the reason for which will 

be discussed later in this chapter. 

Figure 7.4 shows comparison of prediction gains for order p = 10 and p = 50 for 

two-step prediction. The prediction gains showed a definite increase for most of the 

sentences, except Ml, with prediction model order 50. 

Figure 7.5 shows results of overall performance of the coder for prediction orders 

10 and 50. It is clear that the overall performance of the coder with prediction 

order 50 suffers eventhough it has a higher prediction gain. This may be due to the 
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Figure 7.4: Effect of two-step prediction on prediction gain (No quantization of 
measurements, Optimum H^) 

FI F2 F3 Ml M2 M3 
Sentence Id 

Figure 7.5: Coder performance for predictor order 10 and 50. (L=2, No quantization 
of measurements, Optimum H^. vector) 
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measurement model used which was chosen to reduce the error covariance matrix 

size. These results made us decide in favor of a coder with a model order p — 10 and 

also in keeping the state vector size equal to the model order. The model parameters 

are computed using backward adaptation technique and updated every 10 samples 

(1.25ms). From this point onwards, all our discussions will involve a coder with model 

order and state vector of size 10 and error covariance matrices of size (10x10) unless 

otherwise specified. 

Estimation of Process Noise Variance 

The process noise variance is also estimated in a backward adaptive fashion 

from synthesized speech. This estimation is collectively done by the ‘Prediction error 

filter' and the ‘Excitation variance calculator' blocks in figures 7.1 and 7.2. First, 

the synthesized speech is passed through the prediction error filter whose transfer 

function is given by Eqn. 2.24 and the error sequence is generated. The length of the 

error sequence generated is equal to the size of the state vector. The average squared 

energy of the error sequence is computed to give an estimate of Q^, and is updated 

every 10 samples (1.25ms). 

Selection of a Measurement Model 

The method of selecting an optimum measurement vector was described earlier 

in Chapter 6 for the forward adaptive model. The computation of this optimum 

measurement vector requires — 2n multiplies and — n adds. A sub-optimum 

measurement vector can reduce this complexity. The use of optimum measurement 

vector leads to another interesting problem. To start with, the output of the Kalman 
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estimator is just zeros and the predictor coefficients are all zeros, except ag, which is 

1. This results in a whose diagonal elements are zeros except the first two diag¬ 

onal elements which are non-zero because of the process noise variance which is 

given a non-zero initial value as we do not have any a priori estimate of its variance. 

When we find an optimum measurement vector using this P^, , we obtain a of the 

form [1,0,0, • • •, 0] and also a Kalman gain vector of the form Kjf, = [1,0,0, • • •, 0]. 

The estimates are corrected only when a measurement is available. So the corrected 

estimates are alternately zeros.i.e., the samples have values only when a measure¬ 

ment is incident and zero otherwise. This when run through the recursive window 

algorithm for model parameter estimation, results in predictor parameters which are 

also alternately zeros. This again results in a H^, vector of the form .1.0.0,.... 0] 

and the whole process repeats leading to alternate samples of the synthesized speech 

being zeros. This problem can be avoided by selecting a sub-optimum measurement 

vector at least in the beginning. 

Sub-Optimal Measurement Vector A measurement vector which is sub- 

optimal but depends on P^ so as to still make a choice based on the error in the a 

priori estimates was sought . This H^, was obtained as the normalized diagonal entries 

of PjT. The diagonal elements are normalized with the first diagonal element, which 

is the error variance of the latest sample. The computation required for this sub- 

optimal measurement vector is just n multiplies. Also the 'alternate zero’ problem 

in the synthesized speech was solved. This is because the first two diagonal elements 

ofpr are non-zero to start with due to the process noise variance Q^,. So the Hj, 

vector is of the form 11,1,0, • • •. 0] and the Kalman gain vector will also be of the 
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FI F2 F3 Ml M2 M3 
Sentence Id 

Figure 7.6: Effect of measurement vector on coder performance (L=2, No quanti¬ 
zation of measurements) 

form = [1,1,0,• • • ,0] initially. This results in the correction of estimates even 

when there is no corresponding measurement. Therefore, the synthesized samples no 

longer have alternate zeros and we obtain proper estimates of the model parameters. 

Even when the coder uses the optimal H^. vector, it is initiated with the sub-optimal 

Hj. and then switched to optimal vector after a certain time (100 samples in our 

implementation) which is chosen arbitrarily. Performance of the coder with optimal 

and sub-optimal Hj. vectors are shown in Figure 7.6. There is only 0.8dB SEGSNR 

drop on an average for the six sentences when sub-optimal H^. is used. 

Quantization of Innovations 

Once the measurement vector is obtained the scalar measurements zj* which 

are used to correct the estimates are computed as linear combinations of the actual 
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speech samples. These measurements have to be transmitted to the decoder and to 

keep the bit-rate low we need to quantize the measurements. Instead of quantizing 

the measurements directly we can also quantize the innovations [see Eqn. 5.13]. 

The advantage in quantizing the innovations is that it is of lesser energy than the 

measurements and so fewer number of bits are enough to quantize them. The mea¬ 

surements can be easily recovered from the innovations. The measurements and 

innovations are assumed to have a Gaussian distribution since they are obtained as 

linear combinations of the actual speech samples. So innovations are quantized with 

a Gaussian non-uniform quantizer 5] which makes use of the innovation variance 

(Aj^) and the measurement mean (H^.x^" ) for the design. Since only the innovations 

are transmitted to the decoder, the number of bits used to quantize them will decide 

the bit-rate of the coder. For example, the innovations are quantized with a 4-bit 

Gaussian non-uniform quantizer and transmitted at regular but sparse intervals of 

Z = 2 to achieve a bit-rate of 16Kbps. 

Figure 7.7 shows the actual speech (thin lines) and the synthesis error (thick 

lines) waveforms for a short segment of speech. This waveform corresponds to the 

vowel /ae/ as in 'Cat'. It can be seen that the synthesis error is very large at the 

beginning of every peak. 

The prediction gain cannot be improved any further as discussed earlier in this 

chapter. So the quantized measurements and its related quantities like the measure¬ 

ment mean (H^.x^) and innovation variance (A^,) were studied to give some clue 

about how to keep the quantization noise small in the measurements. Figure 7.8 

shows a plot of the measurements with (thick lines) and without (thin lines) quanti¬ 

zation. The measurements surely suffer because of the quantization. 
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Vowel ‘ae’ as in Cat 

Sample number 

Figure 7.7: Effect of 4 bit quantization on synthesized speech (L=2, Optimum H^) 

Sample number 

Figure 7.8: Effect of 4-bit quantization on measurements (L=2, Optimum measure¬ 
ment vector) 
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Figure 7.9 shows a plot of the measurement mean when the innovations are not 

quantized. The measurement mean is obtained from the past speech samples and so 

when there is a sudden peak after a small signal its value is still small. This is a 

problem introduced by backward adaptation. 

Vowel ‘ae’ as in Cat 

Figure 7.9: Effect of backward adaptation on measurement mean (L=2, No quanti¬ 
zation of measurements, Optimum H^) 

The innovation variance (A^.) with (thick lines) and without (thin lines) quanti¬ 

zation is shown in Figure 7.10. The innovation variance is definitely reduced drasti¬ 

cally because of quantization effects. 

Since the measurement variance and measurement mean are small, the quantized 

measurement is clipped. This type of noise introduced in the measurement is called 

overload noise [5] and it occurs when the input signal to the quantizer exceeds the the 

maximum value that can be handled by the quantizer. One solution to this problem 

would be to increase the innovation variance somehow so that the step sizes of the 
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Vowel ‘ae’ as in Cat 

Sample number 

Figure 7.10: Effect of 4-bit non-adaptive quantization on measurement variance 
(L=2, Optimum H^.) 

Vowel ‘ae’ as in Cat 

4800 4900 5000 5100 
Sample number 

Figure 7.11: Effect of 4-bit adaptive quantization on measurement variance (L=2, 
Optimum Hj.) 
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quantizer are larger and thus accommodate higher amplitude signals also. A simple 

solution was provided by increasing the innovation variance 4 times. An average 

increase of 1.5dB in SEGSNR was observed in the coder performance. To improve 

the measurements further, an adaptive quantizer [5] [20] was used to quantize the 

innovations in addition to scaling the innovation variance up 4 times. Adaptive 

quantization is described below. The discussion will be very brief as it is a well 

understood concept. 

Adaptive Quantization Adaptive quantizers are so called because they op¬ 

erate with a time varying step size depending on the input statistics. Quantizer 

adaptation to changing inputs are of three important types: 

(i) Adaptation to the changing variance of the input 

(ii) Adaptation to the changing input pdf (Probability Density Function) 

(iii) Adaptation to a changing mean of the input 

In our case we have a problem of sudden changes in the innovation variance. So we 

will briefly deal with type (i) here. Let us assume that the step-size of a uniform 

quantizer is A(k). where k refers to the time index of the input signal and let the 

number of quantizer levels be 2N (X each for positive and negative vlaues). The 

problem we have in hand is then to adapt this step-size A(k) to the changing input 

variance Q^. The step-size adaptation works as follows. The step-size is changed by 

a multiplicative quantity where i — 1,2 X refers to the output level. If the 

previous input signal amplitude falls in the 'inner' levels, say for example in the first 

4 levels of a 4-bit quantizer, then the step-size is probably large and the step-size 

is reduced by multiplying the variance of the input signal by a quantity less than 1 
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Vowel ‘ae’ as in Cat 

Figure 7.12: Effect of 4-bit adaptive quantization on measurements (L=2, Optimum 

H*) 

for the next input sample. If the amplitude of the input sample falls in one of the 

‘outer’ levels, for example in the top 4 levels, the step-size is probably small and so 

it is increased by multiplying the variance of the input signal by a quantity greater 

than 1. These multipliers were chosen through trial and error so as give the best 

performance possible and we chose the following multipliers for the 4-bit adaptive 

quantizer to quantize the innovations. M\ = 0.625, M<2 = 0.625, M3 = 0.625, A/4 = 

0.625, A/5 = 1.5, M6 = 1.5, M7 = 2 and A/g = 2. 

Figure 7.11 shows how the measurement variance improves with the use of the 

adaptive quantizer. The estimate of the innovation variance seem to track the actual 

variance much better than with a non-adaptive quantizer. In the figure the thick lines 

show the innovation variance for different samples when the innovations are quantized 

with an adaptive quantizer and the thin lines are the innovation variances when the 
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innovations are not quantized. The adaptive quantizer designed as above provided 

almost 2dB increase in SEGSNR over the non-adaptive quantizer. Figure 7.12 shows 

the plot of measurements when the innovations are quantized with (thick lines) an 

adaptive quantizer and without (thin lines) any quantization. 

Error Spectrum Shaping 

Another issue related to speech coders is reconstruction error spectrum shaping. 

It has been found that the speech hearing mechanism works in such a way that 

we can have more noise in the formant regions than in the inter-formant regions. 

According to this experiment the subjective quality does not depend on reducing 

the squared error alone. The error spectrum should be distributed such that there 

is more noise in the formant regions and less in the inter-formant regions where the 

error is perceptually less noticeable. This redistribution of the error energy can be 

done by means of ‘pre-filtering' actual speech and then ‘post-filtering' the synthesized 

speech by means of appropriate filters and also minimizing ‘weighted' error instead 

of actual error. This reconstruction error, which is the error between the synthesized 

and the actual speech, can be ‘weighted' by passing the error through a filter whose 

frequency response is approximately the inverse of the speech spectrum. This will 

shape the reconstruction error as desired. One such filter is 71 

W(z) = 

1 - ^P 
-m = 1 am‘ 

- rn 

1 - —'777 — 1 1 
(7.1) 

where the parameter * controls the shape of the spectrum. For example, a value of 

7 = 1 results in no perceptual weighting and 7 = 0 makes the reconstruction error 

proportional to the envelope of the speech spectrum. A good choice for 7 is 0.73 for 

speech signals sampled at 8kHz. 
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Perceptual weighting is done as follows in our speech coder. First, the input 

speech is weighted using the weighting filter l'F(c) and the measurements are com¬ 

puted from this weighted speech. So W(z) is used as the ‘pre-filter'. We should also 

synthesize weighted speech and so the transfer function of the synthesis filter will be 

F(c)W(~) 
1 

1 + amlmz-m 
(7.2) 

From this equation we can deduce that weighted speech can be synthesized by re¬ 

placing the predictor parameters am's by ^mam's in the state vector update equa¬ 

tion :Eqn. 5.11: and the error covariance matrix update equation lEqn. 5.12]. Once 

weighted synthesized speech is obtained by minimizing the ‘weighted' error, it is 

deweighted by means of a ‘post-filter' of the form 1 i\V(z). The parameters for the 

weighting filter \\ (c) are usually computed from actual speech in most coders. But 

these coefficients have to be transmitted to the decoder if done this way. So to avoid 

increasing the bit-rate we use the same predictor coefficients that were computed 

from synthesized speech. 

In figures 7.13 and 7.14 the thick lines represent the spectrum of error and the 

thin lines represent spectrum of actual speech. The error spectrum which is almost 

white in Figure 7.13 has been shaped in Figure 7.14 and it is seen to follow the shape 

of the actual speech spectrum. 
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Spectrum of ‘ae’ as in Cat 
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Figure 7.13: Spectrum of /ae/ as in Cats without error shaping (7 = 1.0) 

Spectrum of ‘ae’ as in Cat 

Figure 7.14: Spectrum of /ae/ as in Cats with error shaping(7 = 0.73) 
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CHAPTER 8. IMPLEMENTATION AND RESULTS 

In Chapter 6 we had discussed issues related to the design of different functional 

blocks of the proposed coder. In this chapter we will talk about the implementation 

and working of the coder and also present results for a 16kbps coder. 

Implementation 

In this implementation. 

(i) the speech signals are sampled at 8kHz and so the interval between two samples 

is 0.125ms. 

(ii) the all-pole model used is of order p = 10. 

(iii) a group of 10 consecutive speech samples is called a 'vector' and in the Kalman 

estimator it will be called a 'state vector'; a sequence of 10 prediction error values 

will form an error vector. 

(iv) since the state vector of size 10. the related error covariance matrix is of size 

10x10, 

(v) innovations produced by the Kalman estimator (analysis) are quantized with 

an adaptive Gaussian non-uniform quantizer and transmitted at regular but sparse 

interval of L='2 to the decoder, 

(vi) the model parameters and the process noise variance are updated once every 
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vector, and 

(vii) the error spectrum is shaped by using a weighting filter W{z) given by Eqn. 7.1; 

the parameter 7 which controls the shape of the error spectrum takes a value Of 0.73. 

The synthesized speech, which is the output of the Kalman estimator, is used in 

the computation of the model parameters and the process noise variance estimate. 

The synthesized speech samples are fed to the recursive windowing algorithm which 

computes the autocorrelation coefficients. These coefficients are computed only once 

every vector as we need to update the model parameters only once in 10 samples. 

The autocorrelation coefficients that are obtained are passed to the Levinson-Durbin 

algorithm which computes the parameters of the all-pole model. An error vector 

is obtained by passing synthesized speech through the prediction error filter. The 

average energy in the error vector is computed to give an estimate of the process 

noise variance Q it- This is also updated once every vector. 

At the start of a speech sentence, the model parameters are all zeros and the 

estimate of will also be zero. If this is used in the error covariance update the P^~ 

matrix will contain only zeros and so will result in a 0 0 operation in the calculation of 

Hjf,. To avoid this problem Q^, is limited to a minimum value of 1. These parameters 

are now used by the Kalman estimator to analyze and synthesize speech. At the 

encoder, the input speech is buffered, the state vector xj^ is formed, and given to 

the Kalman estimator (analysis). The state transition matrix whose elements 

are defined by the all-pole model parameters, is used to update the a posteriori state 

estimate and form the a priori (predicted) state estimate. A two-step prediction 

is done since the measurements are available only once in two samples. The state 

transition matrix is also used in updating the error covariance matrix. The estimate 
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of the process noise variance which is used in this update is obtained as explained 

earlier. The sub-optimal measurement vector is obtained from P^~ and used in 

the formation of the measurements. 

The innovations are then formed as a difference between the measurements and 

their estimates and quantized with an adaptive Gaussian non-uniform quantizer. 

These innovations are then used to correct the a priori estimates and obtain the a 

posteriori estimates (filtered) of the state vector. The two samples at the bottom of 

the a posteriori state estimate vector are output as synthesized speech. To start with, 

the a prion and a posterion state vectors are zeros and then are corrected as the 

measurements are given. Since the measurements correspond to the estimate on top 

of the state vector buffer and the output synthesized speech samples correspond to 

the bottom of the state vector there is an algorithmic delay of 10 samples (1.25ms). 

In our implementation we did not have a separate decoder since the function of 

the encoder and decoder are essentially the same except for the generation of the 

innovations at the encoder. 

Results 

As we have already dealt with the effect of different parameters like two-step 

prediction, model order, measurement vector, and quantizer design in Chapter 6 we 

will just present results for coder with an implementation as described earlier with 

and without quantization of innovations. Results are provided for performance of 

coder with and without error shaping. Both optimum and sub-optimum measurement 

vectors have been used in these tests. In all the experiments, sentences described in 

Table 7.1 were used and SEGSNR was used as an objective measure to quantify 
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the performance. The algorithm was also tested by subjective (informal hearing) 

measures. 

We begin by showing how the innovations help in correcting the estimates. Fig¬ 

ure 8.1 shows plots of the prediction gain, the a posteriori gain, and the actual 

output SEGSNR of the sentences. The average prediction gain is about 5dB. After 

one correction the average SEGSNR increases to almost lldB. Because of the choice 

of the measurement vector the estimates are corrected till the synthesized speech 

samples come out of the Kalman estimator. This is the reason why we see a further 

improvement in the gain (shown by the Output SNR). 

FI F2 F3 Ml M2 M3 
Sentence Id 

Figure 8.1: Improvement in estimates due to measurement vector (L=2, Optimum 
Hj. vector) 

Figure 8.2 shows plots of the actual speech, reconstructed speech, reconstruction 

error and the segmental SNRs for sentence M2. An optimum measurement vector 
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was used, the innovations were quantized with a 4-bit adaptive quantizer and no 

error shaping was done. The reconstruction is quite good for voiced speech sounds 

which is evident from the segmental SNRs and reconstructed speech. Sometimes 

the innovations fail to correct the estimates properly because of quantization effects 

explained in the previous chapter. This is the reason why we find some prominent 

spikes in the reconstruction error. The segmental SNRs show that the performance is 

between poor and medium for unvoiced sounds [low-amplitude signals in Figure 8.2]. 

Objective Quality 

As mentioned earlier. SEGSNR is used as the objective quality measure. Ta¬ 

bles 8.1 and 8.2 show results for the coder when optimum measurement vector was 

used. When the innovations were not quantized the average SEGSNR of the 6 sen¬ 

tences was 15.1dB without any error shaping and it dropped to 14.5dB on error 

shaping. Wrhen the innovations were quantized with 4-bits, the average SEGSNR 

dropped to 12dB without error shaping. With error shaping an average of 10.2dB 

was obtained. 

Tables 8.3 and 8.4 present results for the coder when the sub-optimum mea¬ 

surement vector was used. There was only an average drop of 0.8dB in SEGSNR 

when compared to the results obtained with the optimal measurement vector but 

the computational complexity was significantly reduced (to be discussed later). The 

objective quality of reconstructed speech deteriorates with error shaping. In speech 

coding, we are interested more in the perceptual quality than the objective quality. 

Plots of the spectrum with and without error shaping [Figures 8.4 and 8.3] show how 

the error spectrum is shaped. Without error shaping the error spectrum is almost 
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Table 8.1: Coder performance without quantization of measurements (L=2. Opti¬ 
mum H^. vector) 

SEGSNR (dB) 
Without error With error 

Sen Id shaping shaping 7 = 0.73 
FI 17.4 17.2 
F2 9.6 8.0 

F3 16.7 16.4 
Ml 13.8 13.5 
M2 17.4 16.9 
M3 15.7 15.1 

Table 8.2: Performance of 16Kbps coder (L=2. 4-bit adaptive quantization of mea¬ 
surements, Optimum Hj, vector) 

SEGSNR(dB) 
Without error With error 

Sen Id shaping shaping 7 = 0.73 
FI 13.3 11.0 

F2 8.5 7.4 
F3 13.5 11.0 

Ml 11.3 10.0 

M2 13.2 11.2 

M3 12.3 10.3 
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white but after error shaping it follows the spectrum of the actual speech. Infor¬ 

mal listening tests (see next section) show that the perceptual speech quality has 

definitely improved after error shaping. 

Subjective Quality 

Subjective quality tests were done informally since a formal perceptual hearing 

test would involve time and money beyond the scope of this project. These tests 

were done with the help of two listeners. Listener 1 has prior experience in speech 

perception but listener 2 does not have any such experience. These two listeners 

compared the synthesized speech sentences (with and without error shaping) with 

Tbit, 6bit and obit //-law quantized speech sentences. They graded the synthesized 

speech as better than (B), worse than (W) and equal to (E) the //-law coded sentences. 

A B* indicates that the performance is slightly better and a YV* that it is slightly 

worse. 

Tables 8.5 and 8.6 present scores given by the two listeners. Sentence M2 has 

a quality which is close to a Tbit //-law coded speech whereas Ml is close to 6bit 

//-law coded speech. The subjective performance varies from sentence to sentence 

and the two listeners have different opinions about the quality which is evident from 

the results shown,. But both listeners agreed that reconstructed speech with error 

shaping was better than reconstructed speech without error shaping. They also 

mentioned that in most of the sentences the high frequency components were affected. 

The trained listener (listener 1) commented that intelligibility was quite good in the 

synthesized speech but speaker identification was affected to a small extent. 
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Table 8.3: Coder performance without quantization of measurements (L=2, 
sub-optimum Hjr, vector) 

Sen Id 

SEGSNR(dB) 
Without error 
shaping 

With error 
shaping 7 = 0.73 

FI 16.9 16.7 
F2 8.8 9.0 
F3 16.1 15.6 
Ml 12.6 12.5 
M2 16.0 15.9 
M3 14.6 14.6 

Table 8.4: Performance of 16Kbps coder (L = 2. 4-bit adaptive quantization of mea¬ 
surements. sub-optimum H^, vector) 

SEGSNR (dB) 
Without error With error 

Sen Id shaping shaping 7 = 0.73 
FI 12.7 10.3 
F2 7.6 6.8 
F3 1.3.1 10.8 
Ml 10.6 9.4 
M2 12.3 10.6 

M3 11.6 9.7 



www.manaraa.com

80 

Spectrum of ‘ae’ as in Cat 

I 1 i i I I 

0 12 3 4 
Frequency (kHz) 

Figure 8.3: Spectrum of vowel /ae/ as in Cat without error shaping ( L=2, 4-bit 
adaptive quantization of measurements, Optimum measurement vector, 
7 = 1.0) 

Spectrum of ‘ae’ as in Cat 

Figure 8.4: Spectrum of vowel /ae/ as in Cat with error shaping ( L=2, 4-bit 
adaptive quantization of measurements, Optimum measurement vector, 
7 = 0.73) 
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Table 8.5: Subjective scores: Listener 1 

Sen Id Tbit 6bit 5 bit 
FI (Unweighted) W W* W* 
FI (Weighted) B B B* 
F2 (Unweighted) W B B* 
F2 (Weighted) W W E 
F3 (Unweighted) W E E 
F3 (Weighted) W E E 
Ml (Unweighted) W* W* W* 
Ml (Weighted) W* E E 
M2 (Unweighted) E E E 
M2 (Weighted) E E E 
M3 (Unweighted) W W W* 
M3 (Weighted) W W W* 

Table 8.6: Subjective scores: Listener 2 

Sen Id Tbit 6 bit obit. 
FI (L'nweighted) w W W 
FI (Weighted) w W w 
F2 (Unweighted) w w w 
F2 (Weighted) w w w 
F3 (Unweighted) w w w 
F3 (Weighted) w w B 
Ml (Unweighted) w E B 
Ml (Weighted) w w W 
M2 (Unweighted) B B B 
M2 (Weighted) E B B 
M3 (Unweighted) W W W 
M3 (Weighted) W w W 
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Complexity of the Coder 

The computational complexity of the coder as compared to the forward adaptive 

IALPC has been reduced in two steps. 

(i) The complexity is reduced by using autocorrelation method instead of covariance 

method for model parameter estimation. The computation in autocorrelation method 

is proportional to p^ whereas it is proportional to for the covariance method [21]. 

Moreover, with the use of a recursive window instead of the traditional Hamming 

window the number of computations required for the autocorrelation coefficient es¬ 

timation is further reduced. In Hamming window method the number of multiplies 

needed is 3(pD — p/2) and for a recursive window it is 4n(p 1) -4- 2p 4- 1, where 

p is the order of the predictor, n is the frame length and D is the length of the 

window. In our implementation, p is 10, n is 10 and D is 300 samples. So we need 

8985 multiplies if we use Hamming window technique and 461 multiplies if we use 

the recursive window which is an enormous reduction in complexity since we are up¬ 

dating the parameters every 10 samples. One added advantage in using a recursive 

window is that the number of memory locations needed is 6p + 8 rather than n +3Z2/2 

for Hamming window. In actual our implementation it is 68 memory locations for 

recursive window technique and 460 for Hamming window technique. 

(ii) The complexity is also reduced because of the reduced size of the Kalman state 

vector. The number of multiplies and adds needed by the Kalman estimator are 

2 2 6.5nL — 9n and 6 .5nL r 8n 4 3 respectively when an optimal measurement vector is 

used. So it is clear that the complexity is related to the size of the state vector (n) 

and the size of the error covariance matrices (nxr?). Since n is of the order 128 [13] 

in the forward adaptive model and just 10 in the proposed backward adaptive coder 
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there is an enormous reduction is complexity. The complexity is further reduced by 

using the sub-optimal measurement vector. The optimal measurement vector needs 

4- n multiplies and + n adds whereas the sub-optimal measurement vector needs 

only n multiplies. These reductions in computations make it feasible to implement 

the proposed coder in real-time. 

Conclusions and Future Work 

A backward adaptive innovations-assisted linear predictive coder was designed 

and implemented. By using a backward adaptive model the coding delay was reduced 

to be between (2.5-3.25ms) which is required in certain communication networks like 

the public switched networks (PSN). The computational complexity of the coder was 

also reduced a lot compared to the forward adaptive model and this makes it feasible 

to implement it real-time. The results are also quite encouraging to pursue further 

work on this type of coders. But because of the backward adaptation the prediction 

gain suffers and so the performance of the coder is as good as the forward adaptive 

model. The prediction gain does not increase with the increase in model order or 

with the inclusion of a pitch predictor. One way of increasing the quality could 

be by using a better measurement model. Instead of correcting the estimates only 

when the measurements are available, we could predict (in a backward fashion) what 

the measurement could be, by using a linear model, whenever a measurement is not 

available and use it to correct the estimates. This would increase the complexity 

of the coder but could probably improve the performance. A different adaptation 

technique could be used for the quantizer so that they adapt better to the sudden 

increase in magnitude of the innovations. This would help in eliminating the loss of 
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high frequency components. 

There are several other issues open to investigation. The performance of the 

coder in the presence of channel errors could be studied. Since the complexity of the 

coder has been reduced, the algorithm could be implemented using DSP hardware 

and its performance in real-time could make an interesting study. Systolic array 

designs, which are better suited for hardware implementations, could be used for the 

Kalman filter. 
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